skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Cohen, Liron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cohen, Liron and (Ed.)
    We present a networked key-value server, implemented in C and formally verified in Coq. The server interacts with clients using a subset of the HTTP/1.1 protocol and is specified and verified using interaction trees and the Verified Software Toolchain. The codebase includes a reusable and fully verified C string library that provides 17 standard POSIX string functions and 17 general purpose non-POSIX string functions. For the KVServer socket system calls, we establish a refinement relation between specifications at user-space level and at CertiKOS kernel-space level. 
    more » « less
  2. Cohen, Liron; Kaliszyk, Cezary (Ed.)
    We formalize the univariate fragment of Ben-Or, Kozen, and Reif’s (BKR) decision procedure for first-order real arithmetic in Isabelle/HOL. BKR’s algorithm has good potential for parallelism and was designed to be used in practice. Its key insight is a clever recursive procedure that computes the set of all consistent sign assignments for an input set of univariate polynomials while carefully managing intermediate steps to avoid exponential blowup from naively enumerating all possible sign assignments (this insight is fundamental for both the univariate case and the general case). Our proof combines ideas from BKR and a follow-up work by Renegar that are well-suited for formalization. The resulting proof outline allows us to build substantially on Isabelle/HOL’s libraries for algebra, analysis, and matrices. Our main extensions to existing libraries are also detailed. 
    more » « less